

IRASMOS Symposium, Davos, Switzerland, 15-16 May 2008

Quantifying the hazard of catastrophic rock avalanches

Acknowledging John J. Clague Ken Hewitt Reginald L. Hermanns Isaac J. Larsen Alexander L. Strom Johannes T. Weidinger

Oliver Korup

Research Department Avalanches, Debris Flows, and Rock Falls Swiss Federal Research Institutes WSL/SLF, CH–7260 Davos, Switzerland, korup@slf.ch

Rock avalanches

- 1. Characteristics
- 2. Size-frequency scaling
- 3. Implications for hazard assessments

Rock avalanches

- 2. Size-frequency scaling
- 3. Implications for hazard assessments

Rock avalanches

- Extremely rapid (~10¹ m s⁻¹) flow of rock particles
- Volumes 10⁶ 10¹⁰ m³
- Frequently derived from large rock falls and rockslides

Debris avalanches (= volcanic rock avalanches)

Higher content of H₂0 and clay minerals (hydrothermal alteration)

MARK BARRIER

- Higher mobility (H/L)
- Frequently triggered by sector collapse

Rock avalanches

- Dry runout of 10³ 10⁴ m requires very low (Coulomb) friction
- Rock particles are subject to dynamic fragmentation during motion

Abrupt termination of runout process

Debris avalanches (volcanic rock avalanches)

Frequent transformation into debris flows

Swash (run-up) -

Falling Mountain, New Zealand 1929

V ~5.5 x 10⁷ m³

• Fragmentation (typically very angular clasts)

• Preservation of lithologic bedding (negligible vertical particle mixing)

• Furrows, lobes, and levees

"Jigsaw" puzzle texture

Causes and triggers

	Rock avalanches	Debris avalanches
Causes	 Rock-mass discontinuities (fault zones, joints, etc.) 	 Rock-mass discontinuities (fault zones, joints, etc.)
	 Slope oversteepening (e.g. glaciation, fluvial undercutting) 	 Hydrothermal activity
		 Slope oversteepening (e.g. expansion of magma chambers)
Triggers	 Earthquakes 	 Volcanic eruption
	 Rainfall and snowmelt 	 Sector collapse Earthquakes
	 Anthropogenic (mining, blasting) 	

Rock avalanches

- 2. Size-frequency scaling
- 3. Implications for hazard assessments

Quantifying hazard

- Landslide hazard = probability of spatial landslide impact within a specified area per unit time (e.g. annual)
- Quantitative landslide hazard assessment thus requires a mathematical expression of the relationship between landslide size and frequency
- Empirical approach using records of landslide occurrence:
 Size-scaling relationships = statistical models that lump the complexity of spatio-temporal landslide occurrence into very few parameters

Quantifying hazard

Scaling range of rock avalanches

Source: www.gns.cri.nz

- Most studies on size-frequency scaling focus on landslide area
- Largest landslide inventories contain area (volume) information on n ~10⁴ (n ~10³) data points (though few rock avalanches...)
- Most distributions have power-law interval O(2) to O(3)

Landslide area Landslide volume

$$f(A) = c_A A^{-\alpha_A}$$
$$f(V) = c_V V^{-\alpha_V}$$

- Little is known about the scaling properties of large catastrophic landslides (A >1 km²)
- Distributions fitted to smaller landslides imply inverse power law

Most popular distributions

- Power law
- Double Pareto
- Weibull
- Inverse gamma

$$p(A_L; \rho, a, s) = \frac{1}{a\Gamma(\rho)} \left[-\frac{a}{A_L - s} \right]^{\rho+1} \exp\left[-\frac{a}{A_L - s} \right]$$

A_L = Landslide area

 $\rho = 1.40$

 $a = 1.28 \times 10^{-3} \text{ km}^2$

 $s = -1.32 \times 10^{-4} \text{ km}^2$

Estimated range of scaling exponents

 $f(A) = c_A A^{-\alpha_A}$

where $2.2 < \alpha_A < 2.4$ ($\mu \pm 1$ s.e.)

$$f(V) = c_V V^{-\alpha_V}$$

where $1.6 < \alpha_V < 1.9$ ($\mu \pm 1$ s.e.)

Scaling properties of volume (up to 10¹⁰ m³): Catastrophic rock-slope failures (mainly rock and debris avalanches)

Limitations of the method

Estimates of scaling exponents depend on

- Sample size
- Bin size
- Regression method (OLS, GM, Max Likelihood)
- Lithology
- Landslide type
- Additional scatter comes from
 - Map projection (alpine topography)
 - Subjective mapping
 - Use of scar, deposit, or total affected areas

Potential pitfalls

Detection of rock avalanches using remote sensing data is limited by

- <u>Undersampling</u>: dense vegetation cover may mask deposits from rock avalanches
- <u>Erosional censoring</u>: older rockavalanche deposits may have been largely eroded
- <u>Depositional censoring</u>: older rockavalanche debris may have been buried by subsequent failures at the same site (reactivation)

Kokomeren, Tien Shan

~10⁹ m³ rock-avalanche debris

>15 m fluvial terraces topping bedrock

~10⁹ m³ rock-avalanche debris

bedrock

bedrock

Frictionite (= hyalomylonite) in thin section

~600 °C for partial melting of biotite

Source: Weidinger & Korup (in press) Geomorphology.

Rock avalanches

- **1.** Characteristics
- 2. Size-frequency scaling
- 3. Implications for hazard assessments

Temporal constraints

Spatial constraints

- Scaling-derived hazard estimates lump all spatial information and thus do not predict where a rock avalanche of a given size will occur
- Topography can be used as a first-order predictor of rockavalanche occurrence, although failure often obliterates the geometric initial conditions

Topographic constraints

Dynamic modelling

- Modified runout model used for snow avalanches and debris flows yields promising results for rock-ice and rock avalanches (i.e. the IRASMOS spectrum of extremely rapid mass movements)
- This model additionally considers random kinetic energy and particle collisions

Off-site hazards

Young River, New Zealand, 2007

Formation of natural dam upstream of rockavalanche dam

Natural dams introduce

→ Off-site hazards (inundation, catastrophic dam break and outburst flows)

 \rightarrow Potential for a cascade of mainly hydrological hazards

Helicopter

Conclusions

The use of scaling properties to quantify the hazard of catastrophic rock avalanches promises several prospects and pitfalls

 Area-frequency scaling of rock avalanches is well constrained by the power-law tail of an inverse gamma distribution. This trend is valid over >3 orders of magnitude, although exponents (1.2 < α_A
 < 2.0) are lower than those for smaller landslides (2.2 < α_A < 2.4).

This scaling relationship offers a regional-scale measure of quantifying to first order the hazard from rock avalanches, given that temporal constraints are tight enough.

Conclusions

Existing numerical models for simulating snow avalanches and debris flows show promising results for simulating rock avalanches. The use of these models appears to be limited more by the choice of appropriate initial conditions than parameter values.

Recommendations:

- Invest more resources to better constrain the initial conditions of large rock avalanches.
- Consider using a harmonized upscaling approach based on detailed case studies.