

Multi-Risk Aspects

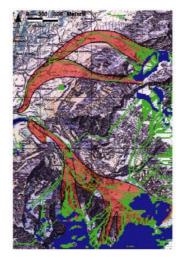
Nicole Bischof

Content

- BASICS Definition of Multi-Risk
- EXAMPLES of multi-risk studies
- FUNDAMENTALS Paradigm shifts and open questions

Multi-risk can be considered as...

...synchronicity of various natural hazards, e.g. rapid mass movements. Characterized by the dimensions time (e.g. seasonal appearance) and place.



Multi-risk can be considered as...

...superposition of various hazards, e.g. rapid mass movements. A common trigger, such as a high-intensity rainstorm or earthquake or previous hazard process releases a subsequent event.

The model is based on a simple assumption: - overall slope > 31%

- glaciers with a modelled potential for producing ice avalanches
- modelled path ways of potential ice avalanches
- estimated path ways of potential
 ice avalanches based on field observations

Grindelwald Region, Swiss Alps

Multi-risk can be considered as...

... synchronicity of various hazards, e.g. technical hazards, manmade hazards, pendemics, etc..

Challenges of multi-risk approaches

- Multi-hazard and multi-risk approaches are usually not applied, only some exeptions
- multi-risk considerations as scientific approach, not yet applied to practice
- \checkmark different details of data and different parameters
- \checkmark difficult to apply to all spatial levels from regional to local
- diverse responsibilities of sectoral planning divisions for different natural hazards

Need for multi-risk approaches

- Most European regions are characterized by the presence of multiple natural and technological risks in an area. However, systematic consideration of multiple risks by spatial planning remains a major challenge.
- Decision makers (e.g., disaster management agencies, urban planners, insurers, regional and local authorities) need comprehensive comparable information which includes all relevant hazards types within a region.
- Quantitative comparisons of hazard assessment results are difficult due to different parameters, thus the mulit-hazard approach has to be enlarged by the multi-risk approach.

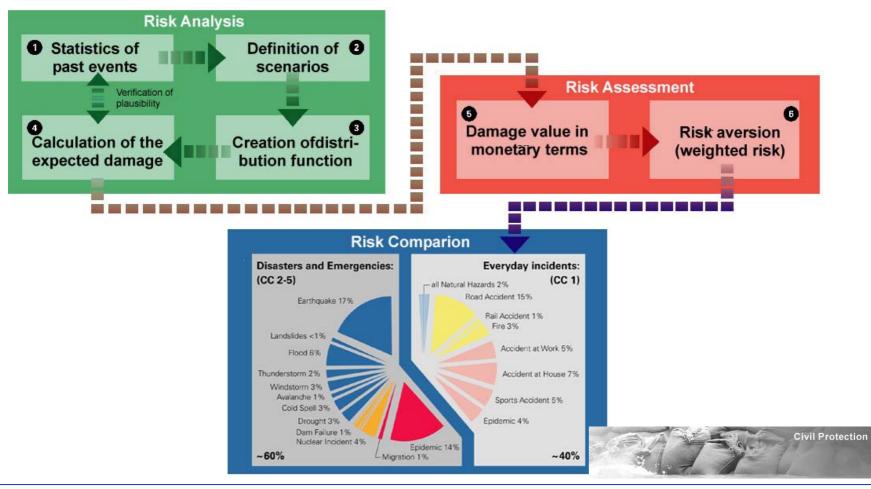
Examples of mulit-risk studies

Awareness of necessarity for comparative synoptic multi-risk studies has recently enlarged, thus the number of examples rises:

- UNDRO study for Manila (1977)
- KATANOS and KATARISK reports for Switzerland (BZS, 1995 and 2003)
- AGSO Cities project for geohazards in Australian urban communities (e.g. Granger et al., 1999)
- Turrialba, Costa Rica (van Westen et al., 2002)
- Toronto, Canada (Ferrier and Haque, 2003)
- EU-project Armonia (e.g. Walker and Deeming 2006)
- Cedim Risk maps for Germany (e.g. Grünthal et al., 2006)
- EU-project Espon (e.g. Olfert et al. 2006)
- GRINP project at Mount Cameroon (Thierry et al., 2008)

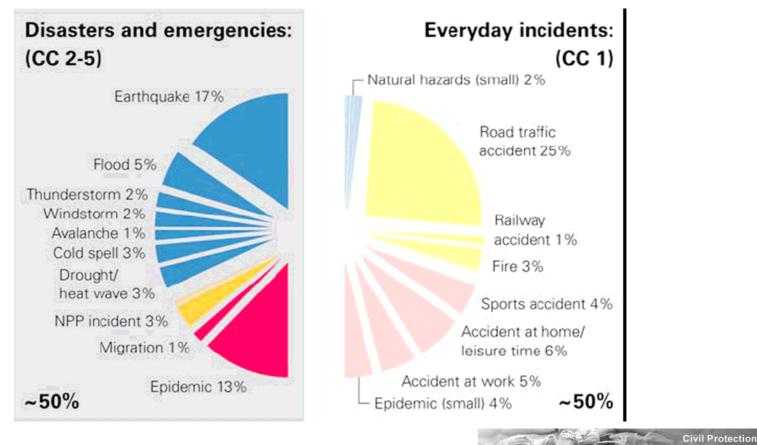
EXAMPLES: Katarisk

- ✓ Conducted by the Federal Office for Civil Protection
- A comparative overview of disasters and societal emergencies in Switzerland
- ✓ disasters and emergencies, which could harm
 Switzerland and their
 significance in terms of
 disaster and emergency
 relief



EXAMPLES: Katarisk

Approach



EXAMPLES: Katarisk

Risk comparison

The need for a multi-hazard, multi-risk land management decision support system was justified through a literature review, as no system which methodically considers both quantitative and qualitative multirisk effects currently exists.

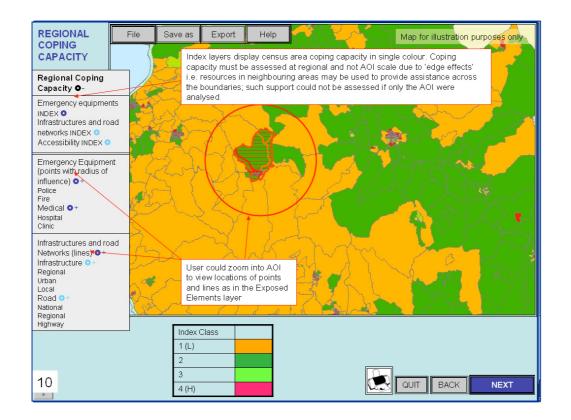
→ Multi Risk Land Use Management Support System (MURLUMSS)

It maps and visualises information on up to

- ✓ 5 different natural hazards and risks as well as
- ✓ different forms of vulnerability and
- ✓ coping capacity
- \checkmark at both regional and local levels.
- \rightarrow multi-scale, multi-risk and multi-vulnerability characteristics

EXAMPLES : Armonia

Multi Risk Land Use Management Support System (MURLUMSS) allows:


- Multiple outputs (scenarios) are envisaged to be capable of informing a
- diverse decision-making forum about the uncertainties inherent in
- managing environmental and social vulnerabilities, in the presence of
- \checkmark sometimes contradistinctive hazard effects.

EXAMPLES : Armonia

EXAMPLES : Armonia

Multi Risk Land Use Management Support System (MURLUMSS) Case Studies:

- ✓ Has been applied to Tuscany region, Italy and to England & Wales
- ✓ Methodology requires further validation
- Decision makers require risk metrics that are quantifiable (e.g. economic damage, potential loss of life)
- Further research is necessary into what the end users of risk maps actually require. Currently hazard maps are widely used, but some need quantifiable risk metrics to evaluate mitigation measures.

Synopse of natural hazards in Saxonia, Germany:

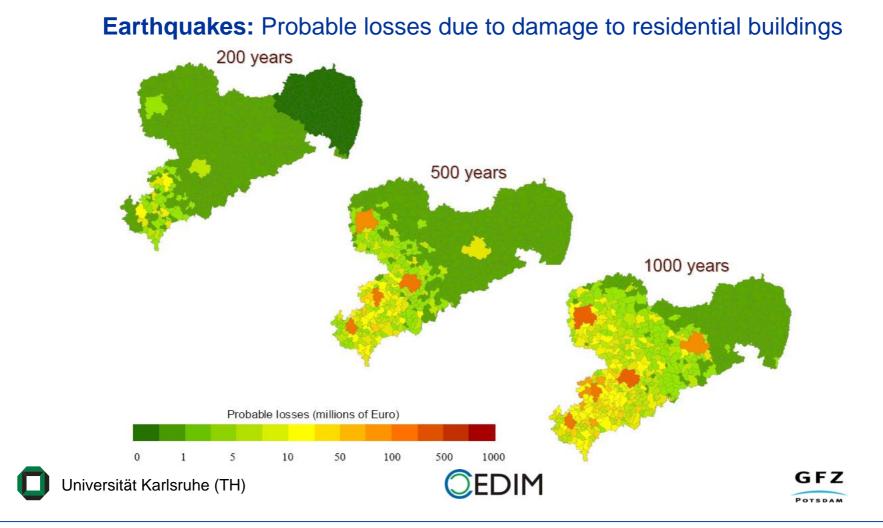
- Consistent comparison of risks due to natural hazards (storm, flood, earthquake)
- ✓ Consistent type of damage (residential houses)
- ✓ Indicators: risk curves, expected amount of damage
- ✓ Loss of life
- No interaction of hazards

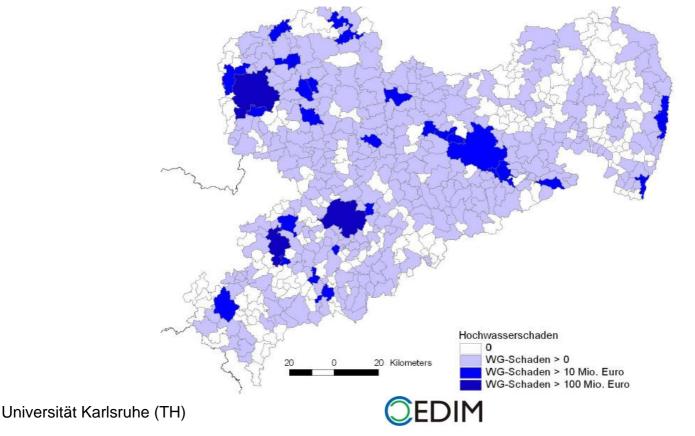
Acknowledments: B. Guse, G. Grünthal, H. Kreibich, K. Poser, A. Thieken GeoForschungsZentrum Potsdam D. Borst, P. Heneka, Th. Hofherr, B. Khazai, S.M. Murshed, S. Tyagunov Universität Karlsruhe (TH)

Universität Karlsruhe (TH)

Synopse of natural hazards in Saxonia, Germany:

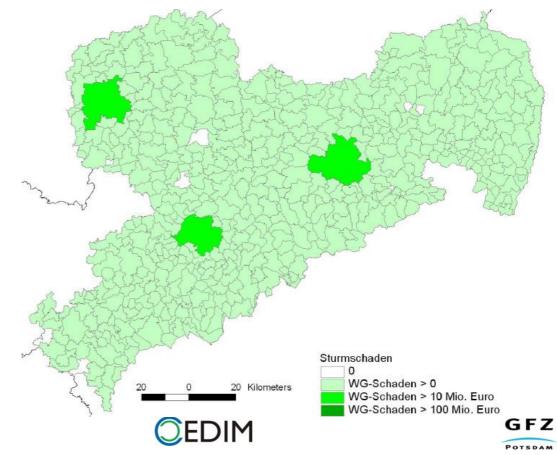
- ✓ Goal: compareable risk assessment for whole Saxony
- ✓ Problems: unequal niveaus of probabilities

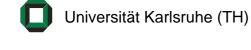

Universität Karlsruhe (TH)



Flood: Probable losses due to damage to residential buildings. Example of HQ200/300

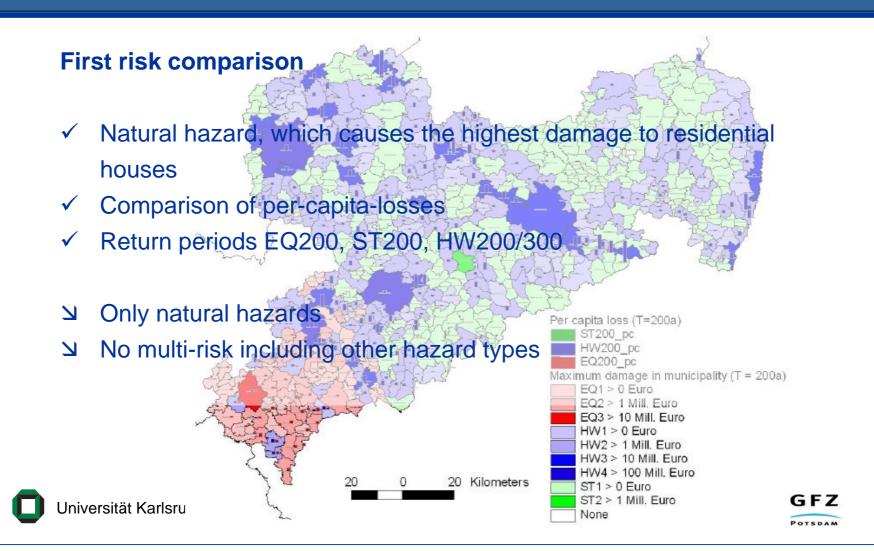
Irasmos Symposium "A Merge of Theory and Practice" May 15-16, 2008




GFZ

POTSDAM

Storm: Probable losses due to damage to residential buildings.


Example ST 200.

A multi-risk perspective is not easily taken on by sectoral planning divisions who typically have a focus on particular forms of hazards. \rightarrow multi-risk in the dimension ,content'

It can however be understood naturally as a task for spatial planning, which is concerned about all potential threats to a given spatial area and their possible interaction. \rightarrow multi-risk in the dimension of ,space'

Also further developments of existing risks and new upcoming hazards should be incorporated into a holistic multi-risk approach. \rightarrow multi-risk in the dimension of ,time'

FUNDAMENTALS

- ✓ Paradigm shift from hazard prevention to risk management
- The shift from single risk management to integral, multi-risk management has still to be done
- Beyond natural hazards: all types of risks have to be considered in an integral multi-risk approach

Thank you for your attention!

Contact: Nicole Bischof, bischof@slf.ch

