

IRASMOS Symposium 2008 15 – 16 May 2008, Davos, Switzerland

University of Natural Resources and Applied Life Sciences, Vienna

Counter measures against extremely rapid mass movements

Markus HOLUB

Institute of Mountain Risk Engineering University of Natural Resources and Applied Life Sciences Vienna, Austria

Integral Risk Management

BOKU A

to prevent, intervene and avoid natural hazards

University of Natural Resources and Applied Life Sciences, Vienna

- includes a combination of silvicultural, bioengineering, technical and administrative/non-structural measures to guarantee an optimal cost-benefit ratio
- essential aspect of risk management is the design of mitigation measures which reduce the existing risk to an accepted level of residual risk
 - => mitigation measures active/passive

permanent/temporary

structural/non-structural

Definitions - active measures

- focus on the hazard
- may affect the initiation, transport or deposition of mass movements
- and can therefore change its magnitude and frequency characteristics
 - » disposition management: changing the probability of occurrence of a mass movement
 - » event management: manipulating the mass movement itself

Definitions - passive measures

BOKU

- focus on the potential damage
- principle of spatial separation of elements at risk from the hazardous area
- may reduce the potential loss by altering the spatial and temporal character of either the damage produced by mass movements or the associated vulnerability
- vulnerability of a disaster can be influenced either with administrative instruments (spatial planning, land use, hazard mapping) or through immediate disaster response

Definitions – permanent / temporary measures

- Permanent measures
 - comprehend durable technical and silvicultural measures as well as land use planning
 - » information of population is subsumed
- Temporary measures
 - » are adjusted to a certain point of time and the hazard potential of a location
 - » are executed spontaneously
 - » usually they complete or substitute the permanent measures with respect to an increased economic efficiency

Definitions – structural / non-structural measures

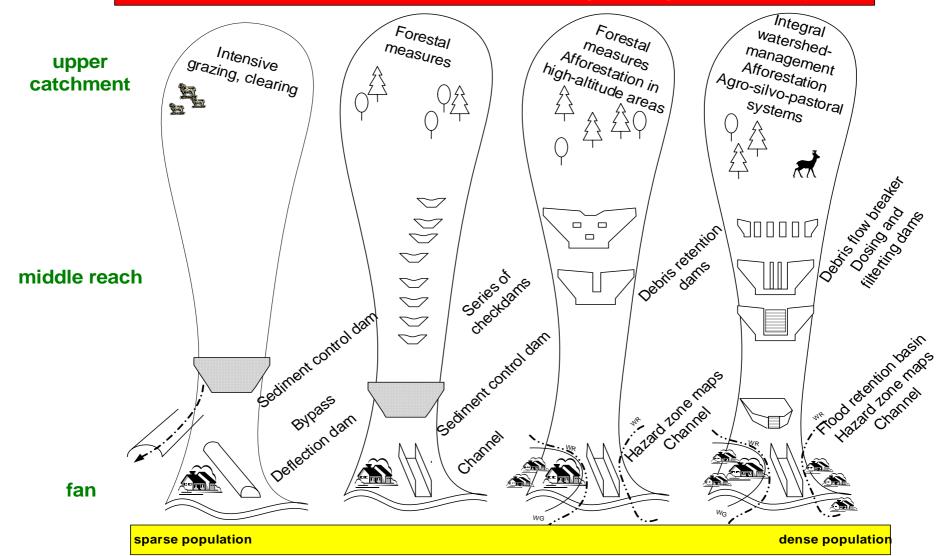
Structural measures

- » include all physical measures used to mitigate natural hazards
- Non-structural measures
 - » are very site-specific and greatly depend on the organizational and legal boundary conditions in each country
 - » typically concentrate on identifying hazard-prone areas and limiting their use temporarily or permanently
 - » further forestal measures can be seen as non-structural measures

Definitions - mitigation measures

			permanent protection effect	temporary protection effect
Active Mitigation Measures	Prevention	Disposition management	Catchment care Forest management activities Soil Bioengineering Technical measures	
		Event management	Technical measures	
	Reaction on the event			Immediate technical assistance
Passive Mitigation Measures		Hazard maps Hazard adopted land-use Building Codes Action and Evacuation plans	Information Warning Alarm Evacuation	
	Reaction on the event			Information Disaster management

Strategy of protection



- best combination of protection measures have to be identified
- special management tasks are assigned for unique elements of protection
- each task defines the performance of the single element with regard to the desired modification of the mass movement process
- ultimately, the sum of each element's functions must lead to the fulfilment of the overall protection objective

Strategy of protection – debris flows

The development from the beginning until today

Strategy of protection – debris flows

Conduction

University of Natural Resources

directing the debris flow on the shortest way through a potentially endanger endang

Stabilisation

protection of the channel bed and the embankments against depth- and lateral erosion

Consolidation

raising the channel bed and reducing the stream gradient supports adjacent slopes of the channel

Bypassing

redirecting surface water around an erosion prone area to avoid excessive sediment recruitment along specific channel sections

Retention

leads to a more or less permanent deposition of sediments; sediments have to be excavated after an event

Strategy of protection – debris flows

Dosing

University of Natural Resources and Applied Life Sciences, Vienna

temporary deposition of sediments; after the event the deposits should be released with the tail water; the intermediate storage of the accumulated material is designed to balance hazard mitigation and an ecological riverine environment

Filtering

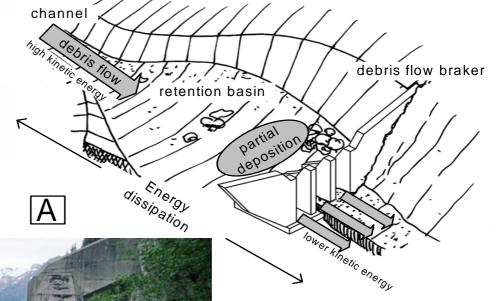
allows particle segregation by grain size to allow only a given grain size to pass the structure

Energy dissipation

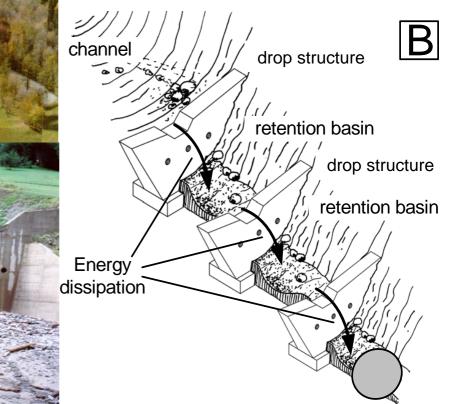
reduction of debris flow energy by slowing and depositing the surge front of the debris flow; downstream reaches of the stream channel and settlement areas are exposed to considerably lower dynamic impacts

Deflection

directs debris flows towards areas of low consequences; this requires the existence of areas with low economic value in which debris flows are allowed to deposit

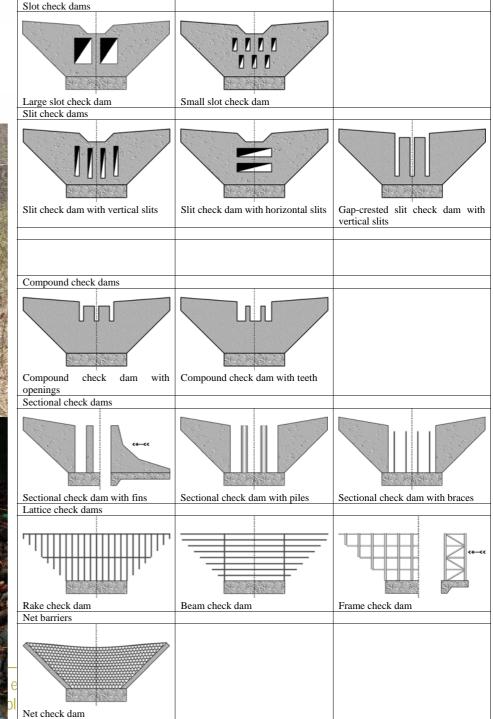

Catalogue of countermeasures Debris flows

Process	Counter measure	Туре			
	Increase clone stability	Drainage			
	Increase slope stability	Soil bio engineering			
		Sill			
	Consolidation / Stabilization	Ramp			
		Closed check dam			
	Transformation of process	Debris flow breaker			
		Drop structure			
Debris flow	Organic debris filtration	Open check dam (rake)			
	Dermanant debris denosition	Open check dam			
	Permanent debris deposition	Deposition basin			
	Temporary debris deposition	Open check dam			
	Protection / Deflection	Protection and deflection walls /			
		dams			
	Discharge control	Transport channel			
	Afforestation				


Debris flow breaker

Debris flow drop structure

Organic debris filter


Debris flow retention basin

Debris flow dosing and filtering

Strategy of protection – snow avalanches

Regulation of snow drift

- Structures influencing the wind flow, direction and speed and the second the second terms in t
- Stabilising snow masses (release area)
 - supporting structures to retain, sustain or support the snow cover in place and to prevent it from sliding
- Influence of already triggered snow masses
 - Structures deflecting or catching the snow masses
- Artificial release of snow avalanches
 - Simple explosives up to high sophisticated blasting devices

Catalogue of countermeasures snow avalanches

Process	Counter measure	Туре
	Snow drift regulation	Snow fence
		Jet roof
		Wind baffle
	Stabilizing constructions	Snow bridge / rake
		Snow net
		Tripod
	Braking constructions	Avalanche breaker
Snow avalanches	Deflecting and catching constructions	Deflecting and catching dam
		Gallery
		Tunnel
	Artificial release	Aerial cableway
		Preplaced explosives
		Gas exploders
		Guns
	Afforestation	

Snow avalanches Snow fence – jet roof – wind baffle

University of Natural Resources and Applied Life Sciences, Vienna

Counter n

Examples – snow avalanches Snow net – snow bridge - tripod

Examples – snow avalanches Avalanche breaker – avalanche deflection

Examples – snow avalanches Gallery – tunnel

Examples – snow avalanches Gas exploders - cable ways – av. guard – av. tower - afforestation

Strategy of protection – rock avalanches

- Structural measures used for smaller rock falls (anchors, rock bolts, nets, concrete ribs) are unsuitable for rock avalanches (large volume, great forces)
- Due to low frequency only little knowledge about triggering mechanisms
- Monitoring systems to obtain better process understanding
- Temporary passive mitigation measures
 - » Effective warning systems for rock slope movements
 - Emergency planning including evacuation and road closure to reduce the consequences of rock avalanches

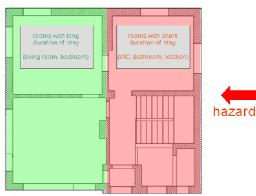
Catalogue of countermeasures rock avalanches

Process	Counter measure	Туре
	Removing unstable rock mass by	
	blasting	
Rock avalanches	Drainage	
	Diversion of surface water	
	Underground water drainage	

Rock avalanches monitoring

Extensometer

GPS


Counter measures against extremely rapid mass movements markus.holub@boku.ac.at

Administrative and organizational methods

- Land use planning based on hazard maps
- Information and education
- Local structural protection measures
- Preparedness and emergency plans
 - » Evaluation of danger level
 - » Identification of exposed areas
 - » Detailed activity plan
 - » Organizational plan

Conclusion

- Different kind of infrastructures may have different demands concerning safety levels (social demand for protection, risk acceptance, residual risk)
- Strategy of protection:
 - » Use of non-structural measures
 - Short-term perspective: preparedness plans, hazard forecasting, temporal evacuation
 - Long term perspective: land use planning and legislation
 - » Use of structural measures
 - Relocation of the endangered people and infrastructure
- Best solution both for the people exposed to the hazard, and for the local and national society. It is to be kept in mind that the interest of these three groups is not always congruent (cost-benefit-analysis).

University of Natural Resources and Applied Life Sciences, Vienna

Thank you!

markus.holub@boku.ac.at