Session on Forecasting of extremely rapid Mass Movements *From Causes to forecasting snow avalanches*

Irasmos conference 2008 Integral Risk Management of Natural Hazards "A Merge of Theory and Practice" Gérald Giraud and Cecile Coleou, CEN/Météo-France

Introduction

- short and descriptive presentation of the WP1 snow avalanche part of IRASMOS project
- WP1 = "From causes to forecasting" for snow avalanches with 3 objectives :
 - To review and compile the causes and trigger mechanisms
 - \checkmark To test the applicability of triggers and thresholds
 - To put and evaluate international state-of-the-art methods and technologies of modelling and forecasting process of triggering mechanisms, runout and potential damage

Plan

- I. SNOW CRISTAL TYPES and PROPERTIES
- **II. INSTABILITY FACTORS**
- III. AVALANCHE DESCRIPTION and DEFINITION
- IV. TRIGGERING CAUSES and MECHANISMS
- V. AVALANCHE WARNING AND FORECASTING METHODS

• a stratified snowpack

• A very widely material

• In perpetual evolution

Precipitation particles +

Frosted (rimed) crystals Precipitation Particles +

Surface hoar

V

Graupel

3D X ray microtomographic picture

7

3D X ray microtomographic picture

Metamorphism

On the ground, snow crystals in permanent evolution due to :

- mechanical metamorphism : settlement and snowdrift

- thermodynamical metamorphism : temperature (heat flow)

Thermodynamical metamorphism according to grain types

snow microstructural evolution under isothermal conditions

International Classification for Seasonal Snow on the Ground

Table I.2. Main morphological classes for grain shapes.						
Class	Symbol	Abbrev ¹	Colour			
Precipitation Particles	+	PP				
Machine Made snow	Ø	MM	-			
Decomposing and Fragmented precipitation particles	/	DF	-			
Rounded Grains	•	RG				
Faceted Crystals		FC				
Depth Hoar	\wedge	DH				
Surface Hoar	V	SH				
Melt Forms	0	MF				
Ice Formations		IF				

Toujours un temps d'avance

Main causes for an unstable snowpack :

Topographical : type of slope (angle..), aspect, vegetation and ground, snow surface conditions, altitude

✓ Meteorological : snowfall, rain, wind, solar radiation and snowpack structure

III. AVALANCHE DESCRIPTION and DEFINITION

Triggering Classification :

✓ **Spontaneous avalanches**. The avalanche is due to changes in the snowpack, themselves directly related to weather and snow conditions.

✓ **Naturally released avalanches**. The avalanche is caused by an external, non-human factor (fall of cornices, seracs, rocks, passage of animals, earthquakes, etc.).

✓ Accidentally released avalanches. The avalanche is caused by an unintentional, human factor (skier, snowboarder, snowshoer, etc.).

✓ Artificially released avalanches. The avalanche is caused by an intentional, human factor (artificial triggering).

AVALANCHE CLASSIFICATION

ZONES	CRITERIA		DISTINGUISHING CHARACTERISTICS				
			 Spontaneous. Internal causes within the snowpack (spontaneous avalanche) 				
			Released. External causes (released avalanche)				
	Type of triggering		• Natural (non human), i.e. cornices, seracs, rocks, animals,				
			etc.				
			● Human				
			O Unintentional (accidental)				
			O Intentional (artificial)				
			◆ Point . Avalanche starts from a point, fanning out downhill				
Ctortin a	Type of starti	ng 70n0	(inverted V shape)				
	Type of starting zone		• Linear. Slab avalanche with a distinct fracture line at the				
			top				
Janung	Snow	Liquid-water	Zero. Dry snow				
20116		content	◆ Low. Moist snow				
			♦ High. Wet snow				
		Cohesion	Low. Avalanche of powder or wet snow				
			Low to moderate. Soft slab				
			♦ High. Hard slab				
	conditions	Type of snow	♦ Recent				
			 Not wind transported, fresh or fragmented particles 				
			• Wind transported, fragmented particles or small rounded				
			grains				
			Metamorphosed • faceted grains / round grains				
	Position of the bed surface		• Within the snowpack (surface-layer slab avalanche)				
			◆ On the ground (full-depth slab avalanche) / / / / / / / / / / / / / / / / / / /				

	Type of torrain	♦ Open slope					
	Type of terrain	Couloir or gulley					
	Dynamics (type of flow)	With cloud of airborne snow					
		particles:					
		 at the avalanche front 					
		behind the front					
(Track)		Without cloud (dense-flow					
		avalanche)					
	Snow nick up	♦ Yes					
		◆ No					
	Blocks and/or other	◆ Yes (slab chunks, ice, rocks, trees)					
	dedris	◆ No					
		Smooth (fine deposit)					
	Surface roughness	◆ Rough (coarse deposit with blocks,					
Deposition		lumps, etc.)					
zono	Snow conditions	♦ Wet (wet deposit)					
	Show conditions	Dry (dry deposit)					
(Runout)	Visibly contaminated	 Yes (avalanche contaminated with 					
		soil, rocks, trees)					
	deposit	♦ No (clean avalanche)					

IV. TRIGGERING CAUSES and MECHANISMS

Associated thresholds : 30 to 60 cm: avalanches only on steep slopes and usual locations 60 to 90 cm: avalanches on moderate slopes (between 30, 40°) and large avalanches >= 90 cm: widespread danger, very large avalanches

TRIGGERING CAUSES and MECHANISMS

Wet snow avalanches :

Spontaneous or released, wet grains with LWC, ponctual or linear type, block with debris flow and deposit

Thresholds are not as clearly defined as those for new snow.

10 mm over 24 hours is a minimum for a destabilisation of the upper layers.

After, destabilisation highly depends on the snowpack structure

Spatial scale of avalanche warning

The massif scale (~500 km²) for regional avalanche

Warning : spatial homogeneity of the meteorological parameters and snowpack in term of elevation, aspect and slope, weather and snow observations daily performed, the snowcover and its afferent dangers directly forced by the weather conditions, pb with local phenomena like snowdrift. In the different European countries, this assessment is operational with good results.

The local scale for road avalanche warning : important role of small scale phenomena in relation with topography, needed more local observations (automatic or human) with snow drift measurements...

The Synoptic method for forecasting the avalanche hazard with supplementary supporting tools (Shweizer and Fohn, 1994)

The snow and weather network : Norway example

Snow and hazard modelling

Since 1970's, different avalanche forecasting models have been developed and used by some European snow and avalanche centres :

Statistical methods using discriminant analysis and nearest neighbours approaches (NXdays, Astral....)

Numerical models to simulate snow cover processes (Crocus, SnowPack, SnowTherm...)

Expert system or neural network to reproduce expert human reasoning

Snow and hazard modelling : statistical approaches

NXD example of a statistical tool at SLF

NXD-Lawinen : a nearest neighbours method (past situations which are mathematically close to the current situation) in order to find snow and meteorological similar days

NXD-Lawinen contains a weather, snow and avalanche database. The avalanche events of those selected days help to estimate the current avalanche danger.

Snow and hazard modelling : statistical approaches

NXD example at SLF

3 versions of this software

- NXD2000 for a

roads). It provides the fore The observed avalanches danger

- NXD-REG for r

Swiss avalanche warning se data sets of 60 observer static avalanche ha

Toujours un temps d'avance

Snow and hazard modelling : statistical approaches

NXD example at SLF

3 versions of this software have been developed :

SCM : the French regional avalanche forecasting tool

SAFRAN

- Meteorological analysis for mountain regions
- notions of massif, altitude, aspect
- Forecast version

Hourly meteorological parameters affecting snowpack evolution

CROCUS : 1D Snow Model

- Simulation of the internal state of the snow pack
 - Temperature
 - Density
 - Liquid water content
 - Metamorphism and layering
- One dimensional Model

MEPRA

1D mechanical analysis

- Additional mechanical characteristics ,
- From ram resistance profile to shear strength profile
- Stability index $S = \frac{C}{\tau_n}$ and $S' = \frac{C}{\tau_{n+\tau_s}}$
- Natural avalanche risk on a 6 level scale and accidental avalanche risk on a 4 level scale
- Avalanche types : wet, recent, mix

SAFRAN Results

31

Ω

SPHERICITY

SPHERICITY

0

CROCUS results

MEPRA results

Other snow models

Models for avalanche forecasting :

SNOWPACK model: developed by SLF, notion of microstructure (bond size), wind pumping, surface hoar, snow drift index...

SNOWTHERM model : developed by CREEL (USA)

Models for hydrology, atmopherical circulation, climate:

CSIRO (Australia), CLASS (Canada), IAP94 (China), ISBA (France), TSCM (Japan), SPONSOR or SWAP (Russia), UKMO (UK), VISA or SNOW-17 (USA)

Avalanche forecasting = avalanche hazard for a given region using the European avalanche risk scale + avalanche bulletin

	Europäische Lawinengefahrensk									
		Escala Europ	ea de Perill d'A							
	Medzinárodná	stupnica lavíno	ového nebezpec	Européenne de risque d'avalanche						
	GB	SL	I	E	D	F	SK			
1	low	majhna	debole	feble / débil	gering	faible	malé			
2	moderate	zmerna	moderato	moderat / moderado	mäßig	limité	mierne			
3	considerable	znatna	marcato	marcat / marcado	erheblich	marqué	zvýšené			
4	high	velika	forte	fort / fuerte	groß	fort	veľké			
5	very high	zelo velika	molto forte	molt fort / muy fuerte	sehr groß	très fort	veľmi veľké			
Evropska petstopenjska lestvica nevarnosto proenja sneznih plazov Escala Europea de peligro de aludes										
1	European avalanche hazard scale Scala Europea del pericolo di valanghe									

Bavarian matrix

	Lawinenwarnzentrale	Probaility of Avalanche Release									
		generally only with large surcharge	particularly with large surcharge (possibly also with small surcharge)	already with small surcharge possible	with small surcharge <mark>probable</mark>	or	Spontaneous release of samll avalanches possible	Spontaneous release of medium, in some cases large avalanches possible	Spontaneous release of many medium, in several cases large avalanches probable	Spontaneous release of many large avalanches probable	
	single hazard sites (specifiable in avalanche report *)	1	2	2	2		1	2			
ard sites	hazard sites on some steep slopes (specifiable in avalanche report *)	2	2	3	3		2	3	3		
	hazard sites on many steep slopes (specifiable in avalanche report *)	2	2	3	4		2	3	4	4	
nainsiu	hazard sites on many steep slopes **)	2	3	4	4		3	4	4	5	
	Hazard sites also in moderately steep slopes				5			4	5	5	

**) the hazard sites are too numerous or too diffusely distributed

to be specifiable with respect to altitude, exposition and/or relief

Remark:

This Matrix has been adopted as a working instrument by the European Avalanche Warning Services in Davos, 2005. Fiels, which are still white, are not yet finally discussed.

Auxiliary matrix for the avalanche report 02.06.2005

Main avalanche hazard information in Europe

Not so different from one country to another with :

✤ a common daily avalanche bulletin with meteorological and snowpack stability information, an estimation of the avalanche risk (nowcasting and forecasting) at a regional or massif scale at least from December to April

Information about avalanche hazards, snow cover conditions, snow depths at # elevations, fresh snow accumulation... on country map (see web site on each country or www.avalanche.org)

Territorial organisation of avalanche hazard forecasting in Europe

Very different for one country to another depending often on administrative organisation with 2 main kinds :

✤ A system with a central office providing information on the whole country (Switzerland, Norway and France)

✤ A system based on the territorial organisation devoted to regional centres sometime depending on regional public administration (Italy, Austria...)

New developments and technology

Surface or space remote sensed observations (mapping and zoning application, snow parameter observations...)

Numerical modelling of snow including snow drift at different scales

Snow microstructure and micro mechanic model

Development of dynamic numerical downscaling operators

3D macro mechanical modelling

Thanks for your attention and to all the European partners, a special thanks to the co-ordinator

SAFRAN

snow microstructural evolution under isothermal conditions

3D X ray microtomographic picture

SafranCrocusMepra chain

- Valuable avalanche forecasting tool for regional forecasters : meteo, snow, stability and risks
- « analyse » mode with all the meteorological data
- 24 and 48 H forecast with the runs of the ARPEGE or ALADIN French meteorological model
- Validations :
 - Meteorological (Col de Porte, Lac Blanc)
 - Snow depths
 - Snow profiles
 - By the avalanche forecasters

