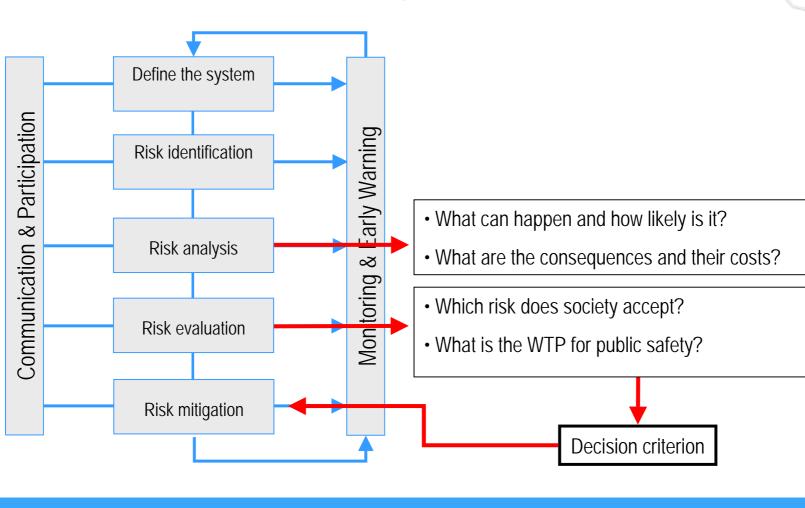




# On the Economic Evaluation of Countermeasures

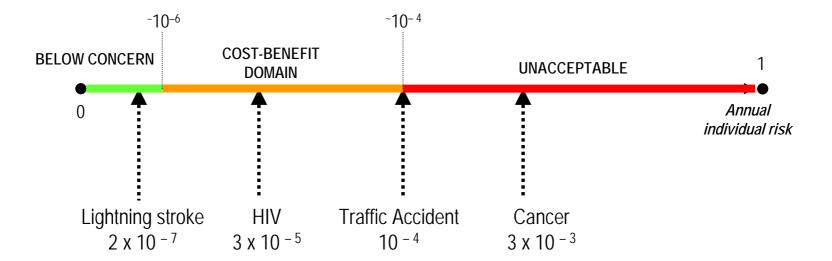
### Outline


- 1. Framework for Natural Hazard Management
- 2. Acceptability of Risks
- 3. Evaluating Risks
- 4. Value of Statistical Life
- 5. Choice Experiment
- 6. Conclusion





irasmos






1. Framework for Natural Hazard Management









| 3. | Evaluating | Risks: | Cost-Benefit | domain |
|----|------------|--------|--------------|--------|
|----|------------|--------|--------------|--------|

| Method                  | CBA                                                                                                                                            | CEA                                                                                                                                       |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Decision Rule           | "Maximize net benefit"                                                                                                                         | "Minimize risk from a given budget"                                                                                                       |
| Theoretic<br>Background | Welfare Economics                                                                                                                              | Decision Science                                                                                                                          |
| Aims at                 | Maximizing societal utility                                                                                                                    | Minimizing individual risks                                                                                                               |
| Applied to              | Environmental Risks <ul> <li>Low baseline risk (&lt; 10<sup>-4</sup>)</li> <li>Population based view</li> <li>Long-term perspective</li> </ul> | Health Risks <ul> <li>High baseline risk (&gt; 10<sup>-2</sup>)</li> <li>Individual based view</li> <li>Short-term perspective</li> </ul> |



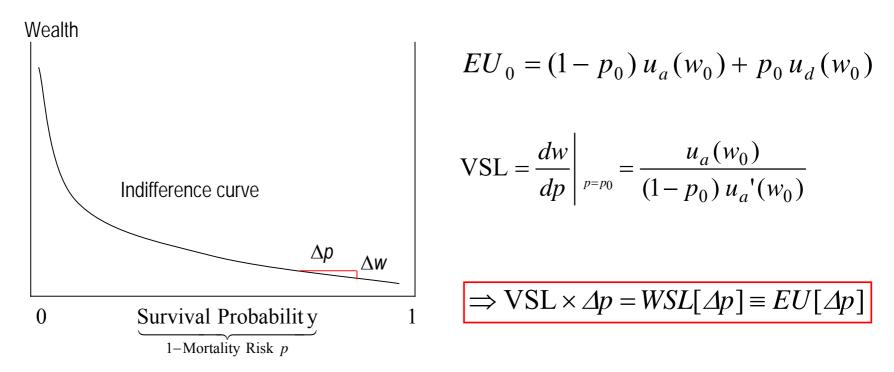
3. Evaluating Risks: CBA versus CEA



• Theoretical superiority of CBA

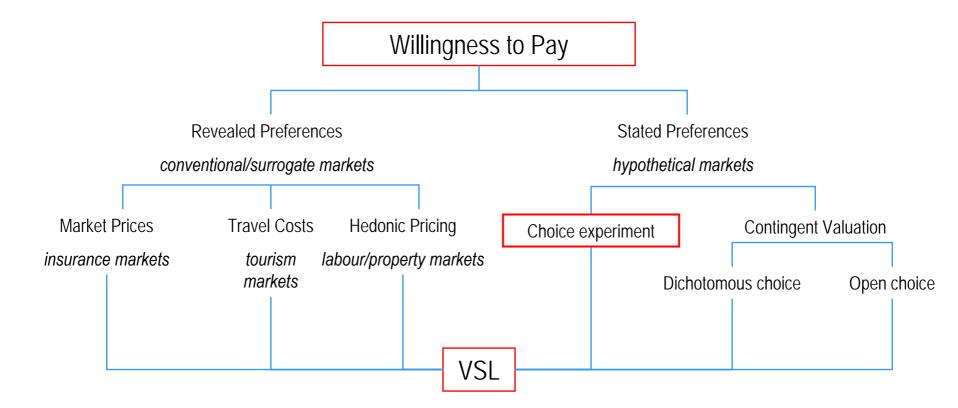
 $\Rightarrow$  The essence of economic analysis is to compare all of the benefits of the proposed action to all of the costs

• Near-equivalence of CBA and CEA


 $\Rightarrow$  Under a given budget constraint, both approaches should lead to similar policy decisions

Comparability ⇒ Find a cutoff value per life saved




### 4. Value of Statistical Life: Conceptual Foundations

VSL does not "value prevention of a specific death but [...] small changes in mortality risk across a population"





4. Value of Statistical Life: Empirical Approaches





5. Choice Experiment: Theoretical Idea



Utility of the risk reduction policy *j* can be split into a **reasoning**-based part expressed by the indirect utility function  $V_i$  and a **intuition**-based random part  $\varepsilon_i$ .

[1] 
$$U_{k,i} = V_{k,i} + \varepsilon_{k,i}$$
. Utility = Deterministic component + Stochastic component  
[2]  $k \succ j \Leftrightarrow U_k > U_j$ ,  $\forall j \in C, k \neq j$ .  
[3] *i* chooses *k* if  $(V_{k,i} + \varepsilon_{k,i}) > (V_{j,i} + \varepsilon_{j,i})$ .



|                                                             | Policy A                                            | Policy B                                            | None of both                                                            |
|-------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------|
| Avoided fatalities per year:                                | <b>12</b> out of 7'500'000 residents of Switzerland | <b>16</b> out of 7'500'000 residents of Switzerland |                                                                         |
| Duration over which protection is provided:                 | 10 years                                            | 10 years                                            | Both policies are not convincing me.                                    |
| Maintenance of<br>protection measures against:              | Rock fall                                           | Snow avalanches                                     | I am therefore <u>not</u><br>willing to make a<br>payment contribution. |
| My <u>one-time</u> payment:<br>(see the red fields on p. 7) | 1%: CHF                                             | 2%: CHF                                             |                                                                         |
| l choose:                                                   |                                                     |                                                     |                                                                         |
|                                                             | Policy A                                            | Policy B                                            | None of both                                                            |







5. Choice Experiment: Model



• Choice analysis based on the multinomial logit model:

$$\Pr(k \mid i) = \exp(V_{k,i}) / \sum_{j \in C} \exp(V_{j,i}).$$

• The use of MNL requires an appropriate indirect utility function *V*:

$$V_{j,i} = \theta_{1,i} \Delta RISK + \theta_{2,i}COST + \ldots + \theta_{j,i}X_{j,i}.$$

• It can be shown that:

$$VSL = (\partial V / \partial \Delta RISK) / (\partial V / \partial COST) = \hat{\theta}_1 / \hat{\theta}_2.$$

- 5. Choice Experiment: First Results
- First VSL estimates between €3.7 and 4.5 million per life saved

 $\Rightarrow$  Estimates are in range with other studies and with the rule of thumb currently used in Switzerland ( $\in$ 3.2-6.4 million per life saved)

- Differences in WTP for avoidance of different hazard types
  - $\Rightarrow$  Different perceptions of avalanches, rock falls, and ordinary traffic accidents

- Risk framing plays significant role
  - $\Rightarrow$  Differences with regard to reference description







6. Conclusion

irasmos

- It is not sufficient for risk management to know what can happen
- If we are striving for optimal protection against natural hazards, we need to know more about society's perception of these risks
- Integrating results from choice experiments into cost-benefit analyses is ONE promising approach
- We only addressed the cutoff value per life saved; much has to be done on other aspects that people regard as important for their WTP





## Thank you for your attention

Contact: Christoph Rheinberger

rheinberger@slf.ch